COURSE LAYOUT

1. GENERAL

	SCHOOL	School of Animal Biosciences				
	DEPARTMENT	Department of Animal Science				
	STUDY LEVEL	Undergraduate				
	COURSE CODE	3640 SEMESTER 2 nd				
	COURSE TITLE	PRINCIPLES OF ORGANIC CHEMISTRY				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	i	ECTS	
Course: Theory and Laboratory Practice (4+2)			6		6	
-		r				
	COURSE TYPE	Foundation of	course			
•	n course, General					
-	e, Scientific area,					
	Developing skills)					
	PREREQUISITES	No				
	LANGUAGE	Greek				
IS THE COL	JRSE OFFERED for	No				
ERAS	MUS STUDENTS?					
CC	OURSE WEB PAGE	https://mediasrv.aua.gr/eclass/courses/EZPY145/				

2. LEARNING OUTCOMES

Learning Outcomes

Introductory course to basic concepts and principles of Organic Chemistry with particular emphasis on the structure and functionality of organic compounds found in living organisms (biomolecules, drugs and pollutants).

Upon successful completion of the course, students are expected to know-understand the:

- basic principles of Organic Chemistry (inductive and mesomeric effects, resonance, carbon hybridization).
- nomenclature, structures and characteristic properties of the major classes of organic compounds along with their characteristic reactions.
- structure and functionality of organic molecules found in living organisms, and
- basic spectroscopic techniques utilized for the identification of the structure of the organic molecules.

Students also be will be able to:

- recognize and understand the molecular structures and main reactions of the major classes of organic compounds.
- understand the basic principles and main rules of stereochemistry.
- comprehend the basic principles of spectroscopy techniques (UV-Ultraviolet, IR-Infrared, NMR-Nuclear Magnetic Resonance and MS-Mass Spectrometry) as well as their applications for the determination of the structure of organic molecules.
- distinguish the main classes of organic compounds & biomolecules, understand their properties and biological functions as well as their mechanisms of action.

• use basic laboratory equipment and develop skills for solving problems and data processing

General Competences

Data analysis-synthesis, information mining. Application of relevant technologies Adapting new situations

Work as individual

Teamwork (in the lab) Working in a multidisciplinary environment Respect the natural environment Exercise criticism and self-criticism Promotion of creative and inductive thinking

3. COURSE CONTENT

THEORY

- Electronic Theories (atomic structure, orbitals, bonds, carbon hybridization, inductive and mesomeric effects, resonance).
- Stereochemistry (general concepts, asymmetric carbons and molecules, three-dimensional molecular structure, enantiomeric and diastereomeric structures, racemic mixtures, meso-compounds, *cis-trans* and *E-Z* stereoisomers).
- Nomenclature of Organic molecules
- Classification of reactions and reagents. Reaction mechanisms (addition, substitution). Acidity basicity of molecules.
- Spectroscopy Structure determination (basic principles and applications in structure determination)
 - o Ultraviolet
 - o Infrared
 - o Nuclear Magnetic Resonance
 - o Mass spectrometry
- Chemistry of Functional Groups (structure, reactivity, major reactions)
 - o Alkanes
 - o Alkenes
 - o Alkynes
 - o Alkyl halides,
 - o Alcohols, ethers
 - o Carbonyl compounds
 - o Acids and their derivatives
 - o Amines
 - o Aromatic compounds
- Biomolecules (applications and utility)
 - o Carbohydrates (aldoses, ketoses, monosaccharides or disaccharides, D or L sugars, Fischer and Haworth projections, chair conformation and basic properties-reactions of monosaccharides)
 - o Amino acids-Peptides-Proteins (acid base properties, structure, synthesis and sequence of peptides, protein structures)
 - o Lipids (fatty acids-fats-oils-triglycerides)
 - o Isoprene compounds (terpenoids-carotenoids-steroids)
 - o Vitamins-Hormones
 - o Nucleic Acids (purines, pyrimidines, nucleosides and nucleotides, DNA and RNA)

LABORATORY

- Extraction-Filtration (Separation of benzoic acid from organic and inorganic impurities)
- Spectrophotometry I (Qualitative assessment of α and β -chlorophylls in animal feed)
- Spectrophotometry II (Quantitative determination of β-carotene)
- Thin layer chromatography (TLC)
- Acidic-basic properties of the amino acids
- Column chromatography
- Isolation of essential oils
- Literature review

4. TEACHING and LEARNING METHODS - Evaluation

TEACHING METHOD	Face to face (theory-laboratory) and remote support via E-				
	mail				
USE OF INFORMATICS and	Power point presentations and video projections in lectures				
COMMUNICATION TECHNOLOGIES	Use of <i>e-class</i> platform				
	Students' support via e-mail				
TEACHING ORGANISATION	Activities	Workload per semester			
(Lectures, individual or group	Lectures	52			
assignments, field trips, individual	Laboratory practices	26			
study et.c.)	Individual work	50			
	Team work	22			
	Total contact hours and	150			
	training	150			
STUDENTS EVALUATION	<u>Theory</u>				
	Written exams (100%) (either as final exam or as the sum of				
	two progress exams during the semester)				
	<u>Laboratory</u>				
	Short answers to questions before every practice, 20%				
	Written exam (Multiple choice questions, simple questions				
	and problems) 60%				
	Individual work assignment 20	%			

5. LITERATURE

- All lectures are available at *e-class* as *power-point* presentations
 Books:
- «ORGANIC CHEMISTRY» (translated from English), John McMurry, Edit. University of Crete
- «ORGANIC CHEMISTRY» (translated from English), L.G. WADE Jr., TZIOLAS eds