COURSE OUTLINE

(1) GENERAL

SCHOOL	ANIMAL BIOSCIENCES				
ACADEMIC UNIT	DEPARTMENT OF ANIMAL SCIENCE				
LEVEL OF STUDIES	Undergraduate [Required]				
COURSE CODE	326 SEMESTER 4th				
COURSE TITLE	STATISTICAL DATA ANALYSIS USING STATISTICAL PACKAGES				
INDEPENDENT TEACHING ACTIVITIES					
if credits are awarded for separate components of the course, e.g. lectures,			WEI	EKLY TEACHING	CREDITS
laboratory exercises, etc. If the credits are awarded for the whole of the course, give				HOURS	(ECTS)
the weekly teaching hours	the weekly teaching hours and the total credits				
Lectures				3	3
Total				3	3
Add rows if necessary. The organisation of teaching and the teaching					
methods used are described in detail at (d).					
COURSE TYPE	Special background/ Skills development.				
general background,					
special background, specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	-				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	No				
	No				
ERASMUS STUDENTS:					
COURSE WEBSITE (URL):					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course, the student is expected to:

- translate a research question into a statistical hypothesis or/and into a regression model
- apply estimation and testing methods in order to make data-based decisions
- model and investigate relationships between two or more variables within a regression framework
- apply checks for method's assumptions
- comprehend and interpret correctly the statistical significance
- interpret results correctly, effectively, and in context without relying on statistical jargon
- comprehend the notion of uncertainty which is always contained in statistical inference critique data-based claims and evaluate data-based decisions
- complete a research project that employs simple statistical inference
- use statistical software to summarize data numerically and visually, and to perform data analysis
- comply to ethical issues.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, Project planning and management

with the use of the necessary technology

Respect for difference and multiculturalism

Adapting to new situations

Respect for the natural environment

Decision-making Showing social, professional and ethical responsibility and sensitivity to gender

Working independently issues

Team work Criticism and self-criticism

Working in an international environment Production of free, creative and inductive thinking

Working in an interdisciplinary environment

Production of new research ideas Others...

- 1) Retrieve, analyze and synthesize data and information, with the use of necessary technologies.
- 2) Adapt to new situations.
- 3) Make decisions.
- 4) Work autonomously.
- 5) Work in teams.
- 6) Create new research ideas.
- 7) Advance free, creative and inductive thinking.

(3) SYLLABUS

- 1) Statistical packages (how to use).
- 2) Brief overview of (a) the principles of statistical inference and (b) inference about means, proportions and variances (confidence intervals and hypothesis tests for a population mean, proportion or variance and for comparing two population means, proportions or variances; Goodness-of-fit test; Chi-Square test of independence).
- 3) Analysis of variance and multiple comparisons tests (LSD, Tukey, Dunn, Duncan).
- 4) Factorial Experiments, statistical analysis and interpretation of main effects and factor interactions. Analysis of variance for repeated measures.
- 5) How to apply checks for method's assumptions (tests for Normality, tests for comparing variances, normal probability plots, residuals plots, etc.). Non-parametric tests (Sign test, Mann-Whitney test, Wilcoxon test, Kruskal-Wallis test, Friedman test, etc.).
- 6) Regression analysis (simple linear regression and correlation; multiple regression; logistic regression). Non-linear models and data transformations.
- 7) Multivariate statistical analysis (Principal component analysis (PCA), Discriminant analysis).

TEACHING METHOD In-class lecturing and in computer lab.

(4) TEACHING and LEARNING METHODS - EVALUATION

Face-to-face, Distance learning, etc.		
USE OF INFORMATION AND	Statistical packages usage. Educational material, updates	and announcements
COMMUNICATIONS	available on the web and e-class.	
TECHNOLOGY		
Use of ICT in teaching, laboratory education, communication with students		
TEACHING METHODS	A salivita	Semester
The manner and methods of teaching are	Activity	workload
described in detail.	Lectures	39
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	Autonomous study	36
tutorials, placements, clinical practice, art		
workshop, interactive teaching, educational		
visits, project, essay writing, artistic		
creativity, etc.		
	Course total (25 h of workload per ECTS)	<i>7</i> 5

Written examination combined with Group or autonomous assignments.

(5) ATTACHED BIBLIOGRAPHY

students.

- 1. Κούτρας, Μ. Β. και Ευαγγελάρας Χ., Ανάλυση Παλινδρόμησης-Θεωρία και Εφαρμογές, Εκδόσεις ΤΣΟΤΡΑΣ ΑΝ ΑΘΑΝΑΣΙΟΣ, 2018.
- 2. Navidi, W., Statistics for Engineers and Scientists, McGraw Hill, 6th Edition, 2024.
- 3. Larsen, R. J. and Marx, M. R., An Introduction to Mathematical Statistics and its Applications, Pearson Prentice Hall, Fourth Edition, 2006.
- 4. Mendenhall, W. and Sincich, T., Statistics for Engineering and the Sciences, Pearson Prentice Hall, Fifth Edition, 2007.
- 5. Zar, J.H., Biostatistical Analysis, Prentice Hall, Fifth Edition, 2010.