Hydrobiology - Planktology [12]

COURSE OUTLINE

(1) GENERAL

SCHOOL	ANIMAL BIOSCIENCES					
ACADEMIC UNIT	DEPARTM	DEPARTMENT OF ANIMAL SCIENCE				
LEVEL OF STUDIES	Undergraduate [Required]					
COURSE CODE	12	SEMESTER 3 rd				
COURSE TITLE	HYDROBIOLOGY – PLANKTOLOGY					
INDEPENDENT TEACHING ACTIVITIES		WE	EKLY TEACHING HOURS	CREDITS		
	Lectures			3	3	
Laboratory Exrecises		_aboratory Exrecises		3	3	
Σύνολο			6	6		
COURSE TYPE	Scientific	area				
PREREQUISITE COURSES:						
LANGUAGE OF INSTRUCTION	Greek					
and EXAMINATIONS:						
IS THE COURSE OFFERED TO	YES (in English)					
ERASMUS STUDENTS:						
COURSE WEBSITE (URL):	Theory					
	https://mediasrv.aua.gr/eclass/courses/EZPY159/					
	Laboratory practice					
	https://mediasrv.aua.gr/eclass/courses/EZPY167/					
TEACHING STAFF:	Stefanos Kalogirou, Eleni Miliou, Emmanouil Malandrakis					

(2) LEARNING OUTCOMES

Learning outcomes

Upon successful completion of the course, students will be able (according to Bloom) to:

- Integrate the physicochemical characteristics of water and geomorphological data of an area with the living organisms of the aquatic environment (Comprehension / Application / Analysis).
- Assess physical and chemical factors that regulate populations, communities, and ecosystems in aquatic environments (Analysis / Evaluation).
- Combine abiotic and biotic parameters to understand the structure and functioning of aquatic ecosystems (Comprehension / Analysis / Synthesis).
- Classify aquatic organisms according to their lifestyle and distribution in the aquatic environment (Knowledge / Comprehension / Application).
- Differentiate planktonic organisms and explain their interactions (**Comprehension / Analysis**).
- Conduct qualitative (basic taxonomic groups) and quantitative assessments of phytoplankton and zooplankton samples, and interpret their importance for oceanographic, fisheries, and environmental studies (Application / Analysis / Evaluation).
- Identify and describe practical applications of Hydrobiology in Aquaculture and Biotechnology (Comprehension / Application).

General Competences

- Search, analysis and synthesis of data and information, utilizing modern technologies
- Adaptation in various conditions and new technologies
- Decision-making
- · Independent personality
- Teamwork skills
- Consideration for the natural environment
- Develop judgement and self-criticism
- Promotion of free, creational and inductive thought

Theory

Introduction to Marine Environment

- Physical and chemical properties of water. Seawater (composition, salinity, oxygen)
- Geography and geomorphology of the oceans, tectonic plates, biogeographic realms
- Seawater masses and circulation (waves, tidal phenomena, sea currents, Coriolis force, Ekman spiral, upwelling, eddies)
- Ecological principles. Ecological components. Trophic levels in aquatic ecosystems
- Biogeochemical cycles (carbon cycle, nitrogen cycle, phosphorus cycle)
- Biological structure of aquatic ecosystems (niche, habitat, biocommunity, species abundance and diversity), ecological regulation
- Larvae and their ecology. r and K reproductive strategies
- Comparison between terrestrial and aquatic ecosystems
- Major subdivisions of the ocean

Plankton

- Life in aquatic environment (plankton, benthos, nekton, neuston). Plankton and planktonic communities. Buoyancy control in aquatic vertebrates
- Phytoplankton (diatoms, flagellates etc)
- Zooplankton (copepods, etc)
- Primary production. Factors that affect primary productivity (light, nutrients, hydrology). Geographical differentiations of productivity. Thermocline
- The oceanic ecosystem: the classical model and the microbial loop
- Plankton migration. Temporal variation of phytoplankton

Nekton

- Oceanic nekton synthesis. Differences between plankton and nekton.
- Ecology and adaptations of nekton, with emphasis to marine mammals (motion, buoyancy, body shape, camouflage, echolocation, migration, reproduction etc.)
- Feeding ecology. Trophic webs. Ecological importance of marine mammals

Deep Sea

- Zonation, subdivisions, and environmental characteristics of deep sea
- Ecology and adaptations of the organisms in different zones (color, size, eyes, mouth, bioluminescence, etc)
- Ecology of the benthic communities in the deep sea (synthesis, structure, richness, diversity, life cycles)

Laboratory practice

- 1. Biology and morphology of aquatic prokaryotic organisms with photosynthetic or chemosynthetic activity, such as Bacteria (mainly thiobacteria) and Cyanobacteria.
- 2. The Kingdoms of Life and brief history of the different classifications. Characteristics of Protista (according to the classification of the 6 Kingdoms) and Chromista (according to the classification of the 7 Kingdoms). Morphological and biochemical differences between the three Domains: Archaea, Bacteria and Eukarya. Primary and secondary endosymbiosis. The Phyla of Kingdom Chromista and their importance in the aquatic environment.
- 3. Morphology and biology of: 1) diatoms, chrysophytes, xanthophytes and phaeophytes (Superphylum Heterokonta, Infrakingdom Halvaria, Subkingdom Harosa, Kingdom Chromista) and 2) ciliates and dinoflagellates (Superphylum Alveolata, Infrakingdom Halvaria, Subkingdom Harosa, Kingdom Chromista)
- 4. Morphology and biology of: 1) cercozoans, foraminiferans and actinopods (Superphylum Alveolata, Infrakingdom Rhizaria, Subkingdom Harosa, Kingdom Chromista) and 2) coccolithophores and cryptophytes (Subkingdom Hacrobia, Kingdom Chromista).
- 5. Morphology and biology of aquatic Metazoa with representatives belonging to the Holoplankton: Cnidozoa (Scyphozoa, Cybozoa and Hydrozoa including Siphonophora), Polychaeta, Ctenophora, Mollusca (Pteropoda, Heteropoda), Chaetognatha, Crustacea (Ostracoda, Cladocera, Copepoda, Amphipoda, Euphausiacea, Mysidacea, Decapoda, Anostraca-Artemia), Chordata (Appendicularia, Pyrosomatidae, Doliolida, Salpida).
- 6. Morphology of biological stages of aquatic organisms belonging to the meroplankton: larvae of Mollusca, Annelida, Echinodermata and Crustacea, as well as ichthyoplankton (eggs, larvae and fry).
- 7. Morphology and biology of Chlorophyta and Rhodophyta (Kingdom Plantae).
- 8. Methods of collecting and studying phytoplanktic and zooplanktic organisms.
- 9. Separation of plankton according to size and its role in marine ecosystems.
- 10. Analysis of real CTD autograph data (CTD Conductivity, Temperature, Depth). Team work (4 students per group)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Physical (face to face), On-line (when necessary)			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	 PowerPoint slideshows and video projections during teaching Teaching activity support through e-class platform Contact with the students via e-mail and announcements in the platform e-student MS Teams (when necessary) 			
TEACHING METHODS	Activity	Semester workload		
	Lectures	39		

	Laboratory practice focusing on methodology	39				
	implementation and case studies in small student groups					
	Individual study	72				
	Course total (25 h of workload per ECTS)	150				
STUDENT PERFORMANCE	I. Theory					
EVALUATION	(a) Optional attendance of Lectures by students (progress, assignments, etc.).					
	(b) Final written examination (100%) including short answer or multiple-choice					
	questions.					
	II. Laboratory practice					
	(a) Mandatory monitoring of the laboratory exercises by the students, with attendance records (progress, assignments, exercises, etc.).					
	(b) Assessment of skills in laboratory measurements/observations and written					
	examination with short answer or multiple-choice questions.					
	III. The evaluation language is Greek (for ERASMUS+ students the evaluatio					
	English).					
	IV. The evaluation criteria are communicated to the students.					

(5) ATTACHED BIBLIOGRAPHY

Recommended Literature for Theory:

(A) Related scientific journals - Publications:

- Marine Biology 6th Edition by Jeffrey Levinton
- Hydrobiology
- Hydrobiological Journal
- International Review of Hydrobiology
- European Journal of Zoological Research
- Oceanography and Marine Biology
- Limnology and Oceanography
- Progress in Oceanography
- Journal of Experimental Biology
- Advances in Marine Biology

(B) Digital Educational Materials (e-class):

- 1. E. Miliou, 2022. Introduction to the Marine Environment (lecture presentation, ppt), Department of Animal Science, Agricultural University of Athens (AUA)
- 2. E. Miliou, 2022. Plankton and Planktonic communities (lecture presentation, ppt), Dep. Animal Science, AUA
- 3. E. Miliou, 2022. Oceanic Nekton (lecture presentation, ppt), Dep. of Animal Science, AUA
- 4. E. Miliou, 2022. Biology of the Deep Sea (lecture presentation, ppt), Dep. of Animal Science, AUA

(C) Recommended Textbooks (EVDOXOS):

- 1. MARINE BIOLOGY. Nybakken James, ION STELLA; PARIKOU & SIA OE, Book Code in Evdoxos: 14619.
- $2.\,\mathsf{MARINE}\,\mathsf{BIOLOGY}.\,\mathsf{Peter}\,\mathsf{Castro},\,\mathsf{Michael}\,\mathsf{E}.\,\mathsf{Huber},\,\mathsf{UTOPIA}\,\mathsf{PUBLISHING},\,\mathsf{Book}\,\mathsf{Code}\,\mathsf{in}\,\,\mathsf{Eudoxos};\,\mathsf{102124728}.$
- 3. MARINE BIOLOGY. Levinton Jeffrey S., BROKEN HILL PUBLISHERS LTD, Book Code in Eudoxos: 86055640.

Suggested Literature for the Laboratory practice:

- (A) Related scientific journals Publications:
- G. Verriopoulos, 2015. Guide to the identification of zooplankton organisms. Department of Biology, National and Kapodistrian University of Athens

(B) Digital Educational Materials (e-class):

- 1. E. Miliou, 2022. Halvaria (lecture presentation, ppt), Department of Animal Science, AUA
- 2. E. Miliou, 2022. Rhizaria & Hacrobia (lecture presentation, ppt), Dep. of Animal Science, AUA
- $3.\ E.\ Milliou,\ 2022.\ Zooplankton-Metazoa\ (lecture\ presentation,\ ppt),\ Dep.\ of\ Animal\ Science,\ AUA$
- 4. E. Miliou, 2022. Meroplankton (lecture presentation, ppt), Dep. of Animal Science, AUA
- 5. E. Miliou, 2022. Protista Chromista (lecture presentation, ppt), Dep. of Animal Science, AUA
- $6.\ E.\ Milliou,\ 2022.\ Bacteria\ -\ Cyanobacteria\ (lecture\ presentation,\ ppt),\ Dep.\ of\ Animal\ Science,\ AUA$
- 7. E. Miliou, 2022. Chlorophyta Rhodophyta (lecture presentation, ppt), Dep. of Animal Science, AUA
- 8. M. E. Miliou, 2022. Plankton collection and study methods Importance of plankton in aquaculture (lecture presentation, ppt), Dep. of Animal Science, AUA
- 9. E. Miliou, 2022. Separation of plankton according to size Role in aquatic ecosystems (lecture presentation, ppt), Dep. of Animal Science, AUA