Ichthyology-Benthology [168]

COURSE OUTLINE

(1) GENERAL

SCHOOL	ANIMAL BIOSCIENCES					
ACADEMIC UNIT	DEPARTMENT OF ANIMAL SCIENCE (DAS)					
LEVEL OF STUDIES	Undergraduate [Required]					
COURSE CODE	168	SEMES	STER 6 th			
COURSE TITLE	ICHTHYOLOGY-BENTHOLOGY					
INDEPENDENT TEACHING ACTIVITIES			WE	EKLY TEACHING HOURS	CREDITS	
	Theory and laboratory practice			6	5	
		TOTAL		6	5	
COURSE TYPE	Scientific	Area				
PREREQUISITE COURSES:	-					
LANGUAGE OF INSTRUCTION	Greek					
and EXAMINATIONS:						
IS THE COURSE OFFERED TO	-					
ERASMUS STUDENTS:						
COURSE WEBSITE (URL):	Theory: https://oeclass.aua.gr/eclass/courses/EZPY193/					
	Laboratory practice: https://oeclass.aua.gr/eclass/courses/EZPY215/					
TEACHING STAFF:	N. KARAKATSOULI, A. DIMITROGLOU, K. BITCHAVA, S. KALOGIROU, E. MILIOU					

(2) LEARNING OUTCOMES

Learning outcomes

Upon successful completion of the course, students will be able (according to Bloom) to:

- Describe and evaluate physiological adaptations and basic systems of fish and benthic invertebrates (**Knowledge / Comprehension / Evaluation**).
- Integrate and assess abiotic and biotic factors that interact to form benthic communities (Application / Analysis / Evaluation).
- Compare benthic communities and explain differences in terms of synthesis and diversity (Analysis / Evaluation).
- Apply measurements of morphometric characteristics, anatomy, and isolation of internal organisms, linking morphological data with ethology and fish nutrition (**Application / Analysis / Synthesis**).
- Analyze the relationship between morphological characteristics of benthic organisms and environmental parameters, feeding, and respiration (Analysis / Evaluation).
- Identify finfish and benthic species at the species level, with emphasis on species of commercial interest for fisheries and aquaculture (Knowledge / Comprehension / Application).
- Apply Hydrobiology concepts to practical problems in Aquaculture and Biotechnology (Application / Synthesis / Evaluation).

General Competences

- Search, analysis and synthesis of data and information, utilizing modern technologies
- Adaptation in various conditions
- Independent personality
- Teamwork skills
- Project planning and management
- Consideration for the natural environment
- Develop judgement and self-criticism
- Promotion of free, creational and inductive thought

(3) SYLLABUS

THEORY

ICHTHYOLOGY

Systematics – External morphology of finfish

- Nervous system of finfish
- Fish sensory systems (lateral line, auditory system and sound production, electric and magnetic stimulus detection, taste, olfactory, vision, bioluminescence)
- Muscular system, skeletal system, fish skin
- Finfish swimming (floating, motion)
- Fish respiration (respiratory system, gas exchange, blood, circulatory system) excretory system acid-base balance
- Fish reproduction (reproduction system, behavior and types of mating, ontogenesis)
- Fish immune system
- Fish Endocrine system (glands, organs, hormones)
- Fish Digestive system (ingestion and swallowing, digestive track, organs and glands of for digestion)
- Trophic classification of fish, feeding behaviour and adaptation
- Ionic and osmotic regulation of fish
- Fish behaviour

BENTHOLOGY

- Estuaries
- Systematics External morphology of benthic invertebrates (Mollusca, Crustacea, Echinodermata, Annelida, Cnidaria, Porifera etc.)
- Internal anatomical and morphological characteristics of benthic mollusks and decapod crustaceans
- Benthic communities of low tide zone
- Ecology of intertidal zone and organism adaptation (resistance to water loss, respiration, feeding, etc)
- Meiofauna (environmental characteristics, adaptations, ecology etc)
- Coral reefs. Symbiosis in benthic communities
- Population dynamics of marine organisms. Anthropogenic impact on the ocean (fisheries, aquaculture, pollution)

LABORATORY PRACTICE

ICHTHYOLOGY

- Laboratory practical on fish species identification of commercial value for fisheries and aquaculture
- Laboratory practical on anatomical and morphological characteristics of finfish

BENTHOLOGY

- Laboratory practical on anatomical and morphological characteristics of benthic mollusks
- · Laboratory practical on anatomical and morphological characteristics of decapod crustaceans

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face in classroom,				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	 PowerPoint slideshows and video projections during teaching Teaching activity support through e-class platform Contact with the students via e-mail 				
TEACHING METHODS	Activity	Semester workload			
	Lectures	39			
	Laboratory practicals focusing on methodology implementation and case studies in small student groups	39			
	Individual study	47			
	Course total (25 h of workload per ECTS)	125			
STUDENT PERFORMANCE EVALUATION	I. Theory (a) Optional attendance of Lectures by students (progress, assignments, etc.). (b) Final written examination (100%) including short answer or multiple-choice questions. II. Laboratory practice (a) Mandatory monitoring of the laboratory exercises by the students, with attendance records (progress, assignments, exercises, etc.). (b) Assessment of skills in laboratory measurements/observations and written examination with short answer or multiple-choice questions. III. The evaluation language is Greek. IV. The evaluation criteria are communicated to the students.				

(5) ATTACHED BIBLIOGRAPHY

Recommended Literature for Theory:

- (A) Related scientific journals Publications: Journal of Fish Biology, Aquaculture, Applied Animal Behaviour Science, Aquaculture Research, Fishes
- (B) Digital Educational Materials (e-class):
- 1. Karakatsouli N., 2022. Introduction to Ichthyology, Fish Taxonomy, Fish Habitats, Fish Gas Exchange-Blood, and the Circulatory System, Fish Endocrine Systems, Fish Nervous System, (lecture presentation, ppt), Dep. of Animal Science, Agricultural University of Athens (AUA)
- 2. Dimitroglou A., 2022. Fish Digestive System and Feeding, Fish Reproduction (lecture presentation, ppt), Dep. Animal Science, AUA
- 3. Bitchava K., 2022. Fish Immune System, Fish Sensory Systems-Behaviour (lecture presentation, ppt), Dep. Animal Science, AUA
- 4. Miliou E., 2022. Benthic communities of low tide zone, Ecology of intertidal zone, Meiofauna (lecture presentation, ppt), Dep. Animal Science, AUA
- 5. Kalogirou S., 2022. Fish Swimming-Buoyancy, Estuaries, Fish Osmoregulation, Fish Behaviour, Fisheries, Coral reefs, Symbiosis in benthic communities, Mangrove Forests, (lecture presentation, ppt), Dep. Animal Science, AUA (C) Recommended Textbooks (EVDOXOS):
- 1. BIOLOGY OF FISHES. O. BONE, R.H. MOORE, PEDIO PUBLISHING, Book Code in Evdoxos: 68402738
- 2. IXOYOAOFIA. NEOФYTOY X., NEOФYTOY N., UNIVERSITY STUDIO PRESS, Book Code in Evdoxos: 68372912
- 3. MARINE BIOLOGY. Nybakken James, ION STELLA; PARIKOU & SIA OE, Book Code in Evdoxos: 14619.
- 4. MARINE BIOLOGY. Peter Castro, Michael E. Huber, UTOPIA PUBLISHING, Book Code in Eudoxos: 102124728.
- 5. MARINE BIOLOGY. Levinton Jeffrey S., BROKEN HILL PUBLISHERS LTD, Book Code in Eudoxos: 86055640

Recommended Literature for the Laboratory practice:

- (A) Related scientific journals Publications:
- (B) Digital Educational Materials (e-class):
- 1. Dimitroglou A., 2022. External Fish Anatomy, Fish Species Identification (lecture presentation, ppt), Dep. Animal Science, AUA
- 2. Bitchava K., 2022. Internal Fish Anatomy (lecture presentation, ppt), Dep. Animal Science, AUA
- 3. Kalogirou S, 2022. Mollusks and Decapod Crustaceans (external and internal anatomy), Decapod Crustaceans (external and internal anatomy), Bivalves and Crustaceans Species Identification (lecture presentation, ppt), Dep. Animal Science, AUA