Principles of Animal Embryology [268]

COURSE OUTLINE

(1) GENERAL

SCHOOL	ANIMAL BIOSCIENCES				
ACADEMIC UNIT	DEPARTMENT OF ANIMAL SCIENCE				
LEVEL OF STUDIES	Undergraduate [Major Elective]				
COURSE CODE	268 SEMESTER 9 th				
COURSE TITLE	PRINCIPLES OF ANIMAL EMBRYOLOGY				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS		CREDITS
	Theory: Lectures			1	1
Laboratory practice				1	1
	TOTAL			2	2
COURSE TYPE	Scientific area				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS:	No				
COURSE WEBSITE (URL):	https://oeclass.aua.gr/eclass/courses/765/				
TEACHING STAFF:	Theory: Balaskas C.				
	Laboratory practice: Kalogiannis D.				

(2) LEARNING OUTCOMES

Learning outcomes

The course Principles of Animal Embryology describes the physiological mechanisms involved in fertilization and embryonic development, as well as the methods used to replicate these physiological procedures in laboratory conditions. It aims to present a review of the science of embryology and its terminology, using literature sources inclusive of acclaimed course books and original groundbreaking papers. It aims to present fertilization and embryonic development in vivo, and the basic methods used in gametes collection and preservation, embryo transfer, in vitro embryo production, sex determination and selection in embryos, embryo cloning and microsurgical division, production of transgenic animals and chimaeras. It aims to train students to identify microscopy embryo samples in various stages of development.

Upon completion of the course the student should be able to:

- $\bullet \ Understand \ international \ and \ Greek \ terminology \ of \ embryology.$
- Comprehend animal embryonic development and the techniques available for the study of embryonic development stages in vitro, as well as their potential and limitations.
- \bullet Comprehend all the modern techniques of assisted reproduction.
- Identify embryo samples using microscopy.
- Use safely and efficiently the necessary laboratory equipment and consumables (microscopes, image analysis), combining literature sources and World Wide Web.

According to Bloom a student should be able to:

- 1. Describe gametes, fertilization, and embryonic development of animals. [KNOWLEDGE]
- 2. Describe the techniques used by modern embryology in animal production. [KNOWLEDGE]
- $3.\ Distinguish\ between\ the\ potential\ and\ the\ limitations\ of\ the\ techniques\ used\ in\ embryology.\ [UNDERSTANDING\ \&\ EVALUATION]$
- 4. Examine embryo samples and practice in vitro applications. [APPLICATION]
- 5. Combine microscopy observations, techniques and literature and thus comprehend embryonic development both in vivo and in vitro. [ANALYSIS & SYNTHESIS]

General Competences

- Search, analysis and synthesis of data, using the required technologies
- Desicion making
- Autonomus work
- Teamwork
- Work in multidisciplinary environment
- Production of new research ideas

- Respect of natural environment
- Promotion of free, constructive and inductive thinking

(3) SYLLABUS

- i. Epigenesis and embryonic development.
- ii. Gametogenesis. Collection and preservation of genetic material.
- iii. Fertilization.
- iv. In vitro embryo production.
- v. Morula. Blastula. Embryo transfer techniques.
- vi. Formation of embryonic body. Metaplasis of blastoderms.
- vii. Embryonic appendages.
- viii. Determination of embryo age and sex. Selection of sex in embryos.
- ix. Embryo cloning and embryo microsurgical division.
- x. Transgenic animals and chimaeras. Production techniques.
- xi. Principles of experimental and comparative embryology.
- xii. Malformations.
- xiii. Latest developments in embryology.

(4) TEACHING and LEARNING METHODS - EVALUATION

	T =				
DELIVERY	Face-to-face – Classroom discussion				
USE OF INFORMATION AND	PowerPoint presentations, multimedia and imaging systems, and the World Wide Web.				
COMMUNICATIONS	Use of light and fluorescence microscopes and stereoscopes fitted with digital cameras				
TECHNOLOGY	and connected with computerised image analysis software. Use of inverted				
120111102001	microscopes fitted with micromanipulation equipment. Embryo cultures. Student				
	learning support by e-class. Communication with students via e-mail.				
TEACHING METHODS	A - Alivia -	Semester			
	Activity	workload			
	Lectures	13			
	Laboratory practice	13			
	Literature search and analysis	10			
	Self study	14			
	Course total (25 h of workload per ECTS)	50			
STUDENT PERFORMANCE	Evaluation language: Greek				
EVALUATION	Evaluation method: Written final examination.				
	I. Theory (T): 60% of the final exam with short-answer questions.				
	II. Laboratory (L): 40% of the final exam with multiple choice questions.				
	Final score: $(T)+(L) = 60+40=100\%$ of the total final score.				
	, , , , , , , , , , , , , , , , , , , ,				
	<u> </u>				

(5) ATTACHED BIBLIOGRAPHY

-Προτεινόμενη Βιβλιογραφία:

- Μάγρας Ι.Ν. Εμβρυολογία των κατοικίδιων θηλαστικών. Εκδ. Οικ. Αφοι Κυριακίδη. Θεσσαλονίκη, 2004.
- Θεοδωρόπουλος Γ., Χαδιώ-Μάντζαρη Στ., Μπαλάσκας Χρ., Οικονομόπουλος Ι. Λειτουργική Ανατομική και Φυσιολογία των Ζώων. ISBN-13: 978-618-80647-8-2 Εκδόσεις Utopia. Αθήνα, 2014. Επιμέλεια- Μετάφραση του Functional Anatomy and Physiology of Domestic Animals, 4th edition, W.O. Reece, Wiley-Blackwell.
- Gordon I. Controlled Reproduction in Farm Animals. CABI, 1996.
- Field T.G. & Taylor R.E. Scientific Farm Animal Production. Pearson, 2016.

-Συναφή επιστημονικά περιοδικά:

Anatomy and Embryology

Animal Biotechnology

Animal Reproduction Science

Cell

Cell and Tissue Research

Development

Developmental Dynamics

Journal of Anatomy

Journal of Animal Science and Biotechnology

Journal of Cytology and Histology

Journal of Histochemistry and Cytochemistry
Journal of Morphology
Nature
Nature Biotechnology
Nature Cell Biology
Nature Structural Biology